Section 4.2

Sigma Notation: The sum of n terms $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ is written as

$$
\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}
$$

where i is the index of summation, a_{i} is the $\boldsymbol{i t h}$ term of the sum, and the upper and lower bounds of summation are n and 1 .

Summation Formulas

1. $\sum_{i=1}^{n} c=c n, c$ is a constant
2. $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
3. $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$
4. $\quad \sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}$
1) Find the following:
a) $\sum_{i=2}^{7} \frac{i+1}{i-1}$
b) $\sum_{k=0}^{5}\left(2 k^{2}+1\right)$
c) $\sum_{i=1}^{n-1} a_{i} x_{i}^{2}$
2) Evaluate

$$
\sum_{i=1}^{n} \frac{i^{2}+2}{n}
$$

for $n=10,100,1000$.
3) Use five rectangles to approximate the area of the region lying between the graph of $f(x)=x^{2}$ and the x-axis between $x=0$ and $x=1$ (draw a picture). Following example 3 , find two approximations - one using left endpoints of subintervals and the other using right endpoints.
4) Use the limit process to find the area of the region bounded by the graph of $y=x^{2}+1$ and the x-axis on the interval $[0,2]$.

Homework for this section: Read the section and watch the videos/tutorials. Then do these problems in preparation for the quiz: \#3, 9, 17, 23, 29, 35, 39, 47, 61

